EVA Specialties (Film application)

August 26, 2018

Hanwha Total Petrochemical

I HTC Introduction

EVA Overview

III Hanwha Total's EVA

IV Film application

V Fisheye

I. HTC Introduction

HanwhaTotal Petrochemical

I General information

Founded	<u> </u>	1988 (as Samsung General	Chemicals)	
Head Office		Daesan, Chungcheongnam-do		
President & JRD	Å	Kim Hee Cheul		
EVP & JRD	æ	Jean-Marc Otero del Val		
Revenue	(P)	KRW 8.2 trillion (a/o 2016)	500billion ruble	
Employee Count	٢ÎÎ	1,590 (a/o 2016)		

Base chemicals, Polymers and energy products from condensate and naphtha as main feed stocks

Production Capabilities

Manufacturing performance

(Kilotons, a/o 2017)

Hanwha

TOTAL

Polymer business

- EVA Solar Cell Sheet
- EVA Extrusion Coating
- LDPE Protection Film
- EVA/LD Wire & Cable
- Film
- Blow

EVA/LD

HDPE

LLDPE

- Bottle Cap
- CPE (Chlorinated Polyethylene)
- C4 film
- Wire & Cable
- Bottle Cap (HDPE)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- Roto
- HIPP (Homo & BCPP)
- Random, Terpolymer
- High MI BCPP
- ABS Replacement
- Battery Case
- Flame Retardant
- PPC

PP

- Long Glass Fiber
- High Flow Comp. for Automotive

Hanwha 🚺 Total

II. EVA Overview

EVA (Ethylene vinyl acetate)

Ethylene-vinyl acetate random copolymer

- Copolymerization with ethylene and vinyl acetate monomer
- Radical polymerization under high pressure

Effect of VA content

Increase of VA content gives :

Polymer properties

- More short chain branching
- Less crystalline (More amorphous)
- Lower melting temperature
- More elastic as solid
- Higher density
- Increased polarity

Application properties

Better adhesion to polar substrate Increased tackiness Lower seal initiation temperature Greater flexibility Higher clarity & gloss Increased toughness

Effect of Melt Index

Effect of Melt Index

Decrease of MI gives :

low MI

high MI

Polymer properties

Higher molecular weight Higher viscosity

Application properties

Lower flowability Higher melt strength Increased impact resistance Increased tensile strength Higher abrasion resistance

Reactor types

	Autoclave	Tubular		
Reactor	Ethylene Initiator Ethylene Polyethylene	Ethylene Initiator Initiator Polyethylen		
Conversion	Up to 22 %	Up to 36 %		
Pressure	1100 ~ 2000 bar	2000 ~ 3500 bar		
Temperature	130 ~ 280 ℃	180 ~ 350 ℃		
Initiator	peroxide	oxygen, peroxide		
Mixing	Stirred/Back Mixing	Plug flow		
Residence time distribution	Broad	Narrow		
VA content	Possible to produce EVA over 40 %	Max. 10 ~ 30 % (depending on the process)		

Characteristics of Tubular EVA

Differences originated from Process

- o Autoclave reactor EVA
 - Broad MWD, high MW tail, F/E (gel) level increase
- o Tubular reactor EVA
 - Narrow MWD, high transparent

Peeling Strength

o Higher peeling strength compared to same MI competitor's grade

Lower Shrinkage

- o Less melt elasticity and memory effect of HTC EVA leads fast relaxation time
- o Low residual stress in a sheet made from casting or calendering process

III. Hanwha Total's EVA

Hanwha Total's EVA Capacity

Plant	Reactor	Licensor	Capacity (KT/Yr)	Start-up
No.1	Tubular	Mitsubishi	155	1991
No.2	Tubular	LyondellBasell	240	2014
Sum			395	

EVA Product Portfolio

Hanwha

HTC EVA consists of a range of vast array of industrial application such as photovoltaic encapsulant, footwear, food packaging, wire & cable and extrusion coating, agricultrural greenhouse film, stretch hood

IV. Film application

HTC's EVA for Film

Grade List

Grade	MI (g/10min)	VA (wt%)	Applications
E032A	0.5	3	Agricultural greenhouse film
E090A	0.8	9	Agricultural greenhouse film
E120A	1	12 Agricultural greenhouse film	
E140A	4.5	14	Packaging film, Multi-layer film
E150A	1	15 Agricultural greenhouse film	
E180A	0.8	18	Agricultural film, Stretch hood, Packaging film, Multi-layer film

Agricultural film E032A/E090A/E120A/E150A/E180A

- o Application: Greenhouse film
- o Product characteristics
 - Excellent light transmittance
 - Low Fish-eye and gel level
 - Excellent physical strength
 - Good dispersion of master batch
- o General film layer structure
 - HTC EVA + master batch(UV, Anti-fogging agent, lagging material, etc)

	anti-aging layer (outer)	LDPE + mLLDPE
Greenhouse film (3 layers)	insulation layer(center)	EVA(3~18% VA) + LDPE
	anti-droplet layer(inner)	EVA(3~18% VA) + LDPE

Optical property

- o Excellent light transmittance
- o Lower haze

* Processing conditions : PLACO 50mmΦ Blown film M/C (Die Gap 2.5mm) Temperature 180 °C, Screw rpm 50, Film thickness 50 μm

I Surface property

o Better clarity due to uniform surface

Physical property

o Excellent impact strength, puncture strength, etc

Puncture resistance (N)

Agricultural film

Resin type	LDPE	LLDPE	HDPE			EVA		
Grade	310A	4220U	F120U	E032A	E090A	E120A	E150A	E180A
Basic property								
MI (g/10min)	0.8	1.0	0.044	0.5	0.8	1.0	1.0	0.8
Density (g/cm ³)	0.922	0.921	0.956	0.923	0.928	0.931	0.936	0.940
VA (wt%)	-	-	-	3	9	12	15	18
Additives								
Anti-oxidant agent	•	•		\bullet		\bullet	•	●
Anti-block agent	lacksquare	ullet		igodol				
Slip agent	lacksquare	ullet		igodol				
UV agent		ullet						
Applications								
Greenhouse								
Mulching								

V. Fisheye

What is Fisheye / gel

Fisheye / gel

- o Film imperfections or defects developed during forming due to disturbances in the polymer flow
 - size : tens of micro meters to few millimeters
 - foreign materials, oxidized or crosslinked polymers
 - Insufficiently melted/dispersed polymer due to high molecular weight of polymer

Source of fisheye

- o Resin production stage
 - high molecular weight polymer
 - oxidation, degradation
 - inorganic additives, impurities
- o Transport, storage, processing, handling stage
 - contamination from environment
 - sluggish region, dead space in extruder (screw / die)

Inspection and analysis

Visual inspection

- o Count all kind/size of fisheye within defined area
- o Count only specified fisheye (large fisheye, black spot, scratch, etc.)

Automatic fisheye counter (AFC)

- o Advantage
 - cover large area
 - analysis fisheye trend, size distribution
- o Disadvantage
 - limitation on distinguishing fisheye type
 - resolution limited by measuring area
- o Type : online measure, offline measure

Identification of fisheye

- o Visual inspection
- o Microscope & hot stage melting test
- o Instrumental analysis : material & element analysis

Analysis with AFC

Time trend, position & frequency, shape of fisheye

#37 24.909 [m]

TOTAL

#40 26.676 [m]

#34 21.343 [m] #36 24.343 [m]

TTE01418

Identification of fisheye

Classification of fisheye

Degradation, crosslinking, oxidation of polymer

- During polymerization and extrusion
- o Crosslinked gel, oxidized gel

Contamination

- Fiber : gloves, clothes, dust
- Inorganic material : additives
- o **Metal**
- o Foreign resin

Microscope & Hot stage

Fisheye analysis using microscope

- o shape, size
- o melting or unmelting
- o measuring Tm

Examples : Oxidized fish-eye

0

0

Examples : other resin contamination

- Shape of fisheye : round, oval shape
 - Hot stage melting
 - o matrix is melted at 75∼85℃
 - o **seed of fisheye melted at 110~115℃** => contamination of LDPE dust

Examples : Fiber

Fiber can be classified by shape, and identified with FT-IR analysis

• Cotton, polyester, nylon, etc.

FT-IR: Cotton, Cellulose

Examples : inorganic material

Inorganic material can be identified with elemental analysis

=> identified as anti-blocking agent

Examples : metal

Metal

- o no melting and same shape under hot stage
- black shadow under transmission microscope, but bright color under reflection microscope (depends on material)
- o material can be identified with SEM/EDS elemental analysis

transmission microscope

reflection microscope

Formation of crosslinked fish-eye during process

- PE/EVA can be crosslinked under excessive heat and shear.
- Crosslinked molecule grows and become visible fish-eye during extrusion process
- Growth rate increases when the temperature is higher and the residence time is longer

Degradation of EVA

- Thermal stability of olefin copolymer
- o (stable) HDPE > LDPE > LLDPE > EVA (unstable)
- Degradation by thermal radical
- o degradation rate increases,
 - at excessive high temperature
 - by oxygen contact

Hanwha

- by impurities such as acid, oxides, metal ion
- o High VA EVA degrades faster

degradation of EVA, releasing acetic acid

FT-IR : oxidation peak

Aging inside the die

- After finishing film extrusion, machine stopped and the EVA (VA 18%) had exposed to excessive high temperature 240 °C for 5 hours
- o showed severe die line

Hanwha

- o oxygen had diffused into die, make EVA severe degradation
 - Proper shutdown procedure is required to maintain low gel condition

Inside the die; after 5 hours aging at 240℃

Casting Die

Processing temperature and antioxidant

- Crosslinking reaction become faster at higher temperature
- o crosslinked/oxidized gel increases as processing temperature increases
- Adding antioxidants can help suppressing crosslinking reaction
- **o** blocking radical generation cycle involving oxygen

Countermeasure

Fisheye type	Possible cause and countermeasure		
Melting type	 resin contamination incomplete melting in extruder, insufficient mixing → increase melting efficiency of extruder. raise processing temperature, use fine mesh 		
Fiber	 contamination → do not use cotton gloves → clean air filter, transport line 		
Metal, inorganic, Black particle	 contamination → use fine mesh 		
Crosslinked Gel Oxidized Gel	 decomposition, oxidation, crosslinking reaction → reduce exposure to oxygen during processing → reduce processing temperature and shear → increase stabilizer content → review start-up & shut down procedure, minimize exposure to high temperature 		

Disclaimer

©2016 Hanwha Total Petrochemical Co., Ltd. ("HanwhaTotal")

All the information, including, but not limited to, tables, charts, and graphs provided in this document are intended solely for presentation/seminar/introduction purposes only. The opinion expressed or information provided herein are based on the presenter's proficiency, experience and cumulative knowledge of the topic(s). Analysis may be performed on representative samples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials.

Hanwha Total makes every practical effort to ensure that the information provided herein is accurate and up-to-date, but makes no (and expressly disclaims all) representations or warranties of any kind, express or implied, with respect to the information, content, or materials included herein including but not limited to the merchantability, fitness for a particular purpose, suitability, accuracy, reliability, or completeness of this information or the products, materials described. Hanwha Total is entitled to alter, change or modify any of the content herein at any time without notice, but not under any duty to do so.

Without prior written approval of Hanwha Total, you shall not forward, distribute, and/or photocopy any part of this copyrighted document.

The use of information should be based on your own due diligence and you agree that Hanwha Total is not liable for any loss, damage or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information contained in this document.

